Comparing The Environmental Impact of Wine Packaging

Same Wine

Different Carbon

Page:

Environmental Issues

Exploring the relevant environmental problems and possible solutions.

©
The Options
3 Different packaging options: Glass, PET, and aluminium.

The PET Options

There are 4 different types of PET bottle with different environmental impacts.

The Aluminium Can

Examining the pros and cons of the aluminium can.

Embodied Carbon

Answering the question 'Which vessel's manufacture produces the most carbon emissions?'

Transport Carbon

Answering the question 'Which vessel's transport produces the most carbon emissions?'

Glass Lifecycle Analysis

Analysing the entire lifecycle of glass packaging, considering both carbon and waste.

PET Lifecycle Analysis

Analysing the entire lifecycle of PET packaging, considering both carbon and waste.
(11) Aluminium Lifecycle Analysis

Analysing the entire lifecycle of aluminium packaging, considering both carbon and waste.
(B)

The Results

The packaging options qualitatively rated on the different issues.

Foreword

The clue is in the name of our company. We are passionate about finding solutions that enable the Events Industry to deliver impeccable wine to the most demanding of consumers. There is currently no greater challenge than developing a sustainable product, but also a lack of information to guide event organisers towards making a decision about wine packaging that is right for them and their customers. This information will enable you to choose the best option for every event.

(1) Carbon

More carbon $=$ more climate change
Every product and its packaging requires energy to make - different materials use different amounts. Generally speaking, the more energy used, the more carbon emmissions.

The Solution

Product packaging should be designed from low carbon materials, and also consider their entire lifecycles. This means considering not only the production of the product but also the transport and end of its life.

(1) Waste

More waste $=$ more pollution
While most materials are recyclable in theory, what actually happens to them usually depends on human behaviour and the infrastructure we have in place to process it.

The Solution

Product packaging should be made from recycled material to make use of existing waste, whilst also being recyclable at the end of its life. Waste management systems and infrastructure should also be efficient and effortless.

(1) The Options

Option 1: THE TRADITIONAL

Glass Bottle

This is the most common packaging choice for wine with the shape of the bottle being a synonymous icon for the drink. However we do not sell these, since they are not safe for events. Glass bottles can be used as a weapon and even without bad intent they can easily get broken and cause a health a safety risk with sharp shards. Glass bottles are also not the most environmentally friendly choice as this report shows.

Option 2: OUR CHOICE

Recycled 100\% rPET Bottle

This is what we use to package our wine. Keeping the iconic shape but with a bottle that is safe for events, it is also made from 100\%

100\%
rPET
75cl bottle recycled material, low carbon to produce and recyclable at end of life. As this report shows it is the most environmentally friendly choice available.

Option 3: AN ALTERNATIVE

Aluminium Can

As an alternative to glass bottles aluminium cans are another choice that is starting to be used more frequently. Without the iconic bottle shape and the small serving size they are a very different wine-drinking experience. Whilst they have better environmental credentials than the glass bottle, they are not as highly rated as our recycled plastic bottles, as this report shows.

An important consideration: The Burden Factor

Choosing recycled material over primary sourced 'virgin' material will lessen the 'burden' on our planet's resources, thus saving the need for the carbon intensive extraction processes. rPET has considerably less embodied CO2e emissions in comparison to even $30 / 50 \%$ recycled aluminium. There is not enough recycled aluminium to meet demand, so using rPET will lessen the burden of primary aluminium mining.

Not all PET bottles are the same, so we chose the best option.

There are 4 choices, with different environmental impacts. See how they compare below:

> Our Choice Of Bottle:
> 100\% Recycled rPET
> Mono Layered Bottle

Made from recycled rPET
Using 100\% recycled material reduces waste, pollution, and demand for virgin resources.

Recyclable at end of life
Being made of only 7 type of rPET with no additional layers makes it very easy to recycle.

Shorter shelf-life

The downside of the single layered construction is reduced shelf-life, increasing chance of spoilage.

Alternative Option 1:
100\%* Recycled rPET Multi Layered Bottle

Made from recycled rPET
Using recycled material reduces waste, pollution, and demand for virgin resources.

Unrecyclable at end of life

Multiple layers of rPET, with an added layer of nylon, make it unrecyclable in normal recycling systems.

Longer shelf-life

The multi-layered bottle keeps the wine unspoiled for longer.
*THIS STATEMENT IS MISLEADING: The majority is 100% recycled PET however the added layer of nylon will be virgin plastic

Recyclable at end of life

Being made of only 1 type of PET with no additional layers makes it very easy to recycle.

Shorter shelf-life

The downside of the single layered construction is reduced shelf-life, increasing chance of spoilage.

Alternative Option 3:
 Virgin PET Multi Layered Bottle

Unrecyclable at end of life

Multiple layers of PET, with an added layer of nylon, make it unrecyclable in normal recycling systems.

Made from virgin PET
Using virgin material increases demand for fossil fuels.

Longer shelf-life

The multi-layered bottle keeps the wine unspoiled for longer.

(1) The Aluminium Can

"Aluminium cans sound like a great option..."

"Made with recycled material"
"Infinitely recyclable at end of life"
"Plastic free!"

These are the 3 main perceived benefits, but they are not as advantageous as they seem:

Using recycled aluminium will still drive virgin material extraction

The available amount of aluminum scrap covers only approx. 30-40\% of the demand for aluminum, and hence approx. 60-70\% of the demand is inevitably made from primary aluminum (Frees, 2008). So using 100% recycled aluminium will appear to reduce the impact of a single product in isolation, however it simply means that somewhere else products will have to be made from 100% virign material.

The printed branding on cans is also problem for recycling. Recycling and reuse of aluminum is not always possible due to painted and anodized aluminum being degraded (Cooper and Allwood, 2012).

Aluminium cans are not plastic free

Most cans have a plastic lining that stops the contents for reacting with or coroding the aluminium. This can be seen in the video below:
 https://youtu.be/pGZyT9vGraw q

This lining will not be recycled and instead will be burned off during the recovery of aluminium when the can is recycled.

SOURCES:

[^0]
Page:

Embodied Carbon

What is it?

The 'cradle to gate' (manufacture to delivery) embodied carbon of a product is the sum of all the carbon dioxide emitted during the manufacture and transport of the raw materials, together with the product's production.

What increases it?

Material Choice - Some materials take more energy to produce than others. For example aluminium takes a lot of energy to extract and therefore has a high embodied carbon.

Weight \& Density - The more material you use to create a product the higher the carbon cost. Therefore lightweight, low density materials such as plastic tend to have a lower carbon per product.

Since the can has a different capacity to a bottle we have calculated the embodied carbon of the packaging required to contain 50cl (500ml) of wine.

Wine Vessels

SOURCES:

1. Conversion Factors. Freighting Goods (Defra 2022)

2 Conversion Factors. Material Use (Defra 2022)
Embodied Carbon g/CO2e
Cradle to Gate (Production)

(\%) Transport Carbon

What is it?

Once produced, the 'bottles' of wine need to be delivered to their customers, and then the empty bottles collected for disposal or recycling. Every journey a product makes increases its carbon emissions.

What increases it?

Packaging Efficiency - The shape of a product dictates how well it will stack alongside itself. Shapes that do not stack well together and leave air gaps reduce the amount of products you can fit in a vehicle, and therefore increase the number of vehicles required.

Packaging Weight - The heavier a product is, the more energy it requires to move, thus increasing the carbon emissions.

SOURCES:

1. Conversion Factors. Freighting Goods (Defra 2022)

2 Conversion Factors. Material Use (Defra 2022)
3. Road Transport Emissions Methodology Report. Conversion Factors (Defra 2022)

Glass Bottle 75cl

Since a can has a different capacity to a bottle we have calculated the carbon footprint of the packaging required to contain 50cl (500 ml) of wine. Total
419 g

Lifecycle Carbon Footprint
'Cradle to cradle’
(Full lifecycle)

SOURCES:

1. UK Waste and Recycling Statistics (Defra 2022)
2. Conversion Factors. Material Use (Defra 2022)

Q Lifecycle Analysis

100\% rPET Plastic Bottle 75cl

Since a can has a different capacity to a bottle we have calculated the carbon footprint of the packaging required to contain 50cl (500 ml) of wine.

Plastic products generally have low manufacturing carbon footprints, and this rPET bottle is no exception. This is because it is so lightweight.

SOURCES:

Lifecycle Analysis Q

Since a can has a different capacity to a bottle we have calculated the carbon footprint of the packaging required to contain 50cl (500ml) of wine.

SOURCES:

1. Metal Packaging Europe Report. MPE (Eunomia 2013)
2. Conversion Factors. Material Use (Defra 2022)
3. Alupro - UK Packaging Waste Statistics (2021)
4. UK Waste and Recycling Statistics (Defra 2022)

8) The Results

High Embodied Carbon

Glass bottles have thick walls and therefore require a lot of material to make. More material = more carbon.

High Transport Carbon
GLASS
bottle

Glass bottles are heavy and not very space efficient, meaning delivery vehicles burn more fuel and can fit less wine in a single journey.

High Recycling Rate

Glass is infinitely recyclable and commonly recycled. Bottles in the UK are often made with a high recycled content.

Health \& Safety
Smashed glass can cause accidental harm underfoot or be used as a weapon for deliberate harm. Bottles are heavy, causing harm if thrown.

[^0]: 1. Metal Mining's Environmental Pressures. p.2881, Tost, M Hitch, M., Lutter, S., Moser, P. and Feiel, S.
 2. Crediting Aluminium Recycling In LCA By Demand Or By Disposal. pp.212-218, Frees, N.
 3. Reusing Steel \& Aluminum Components At End Of Product Life. pp.10334-10340, Cooper, D.R. and Allwood, J.M.
